Densely deployed wireless networks provide one of the most important and sustainable solutions to improve the area spectral efficiency, and to handle the spectrum crunch expected by 2020. They are expected to have a huge economic impact, contributing to 5G small-cell technology, wireless sensor networks (WSN), machine-to-machine (M2M) communications, vehicular-to-vehicular (V2V) communications, and to public safety networks (PSN). However there are many serious technical issues identified in the implementation of these networks:

- Dense wireless networks are inherently interference limited environments, and for conventional network approaches the overall system throughput does not increase linearly with the size of the network. This effect has also been observed for the energy efficiency of conventional dense wireless networks.
- In some dense wireless networks such as M2M, V2V, and PSN, it is not always feasible to have accurate network planning and/or accurate link budget allocation due to their high demand to signalling overhead. In such cases reliable communications over unplanned dense networks becomes a significant technical issue to investigate.
- Increased density provides increased opportunities for user cooperation and networking. Advanced concept of opportunistic networking in heterogeneous networks becomes an interesting issue. On the other hand, security is an increasingly important issue in this new context.

One of potential solutions to these problems is low-complexity opportunistic node cooperation, which reduce the load of devices meanwhile utilising the advantages of route diversity in densely populated wireless networks. Moreover distributed self-organization algorithms have been intensively investigated to support robust and flexible distributed network optimisation. These concepts open a broad spectrum of research directions, standardisation paths and market opportunities, which will involve the relevant communities in both academia and industry arenas in the next decade.

Scope and Objectives:
This workshop aims to gather researchers, regulators and users to present and debate advanced PHY and MAC techniques for coordinated or uncoordinated densely deployed wireless networks and applications, with the perspective of future cellular, M2M and V2V standardisation. Specifically, but not exclusively, the workshop addresses the following issues:

- Cooperative signal Processing for HetNets
- Millimeter waveform design for OPNTs
- Information theoretic limits
- Advanced modulation and coding schemes
- Cooperative communications in large-scale networks
- Physical layer network coding
- Uncoordinated multiple-access
- Non-orthogonal waveforms
- Distributed self-organizing methods
- Routine and re-transmission protocols
- V2V communication protocols
- Security, trust and privacy issues

Important Dates:

- **Paper Submission:** 18 November 2016
- **Notification Date:** 17 February 2017
- **Final Paper:** 10 March 2017
- **Workshop:** 21st May 2017

Organizing Committee:

- **General Chair**
 - Yi Ma
 - University of Surrey
 - UK

- **Program Chairs**
 - Damien Castelain
 - Mitsubishi Electric R&D
 - France
 - Na Yi
 - University of Surrey
 - UK

For more information about IEEE ICC 2017, please visit www.ieee-icc.org